An Internet Book on Fluid Dynamics

Planar Rankine Half-Bodies

If we superimpose a planar source on a uniform stream we can create streamlines which can be replaced by a solid body so as to generate the potential flow around that body. A simple example of this is the superposition of a source and a uniform stream. We choose a uniform stream of velocity U in the x direction so that its velocity potential contribution is $U x$. Then, combined with a planar source of strength, Q, this generates a planar flow with the following features:

$$
\begin{gather*}
\phi=U x+\frac{Q}{4 \pi} \ln \left(x^{2}+y^{2}\right)=U r \cos \theta+\frac{Q}{2 \pi} \ln r \tag{Bgde1}\\
u_{r}=U \cos \theta+\frac{Q}{2 \pi r} \quad ; \quad u_{\theta}=U \sin \theta \tag{Bgde2}\\
\psi=U r \sin \theta+\frac{Q \theta}{2 \pi} \tag{Bgde3}
\end{gather*}
$$

where $x=r \cos \theta$ and $y=r \sin \theta$. This combination produces the streamlines sketched in Figure 1 whose detailed geometry we will now explore.

Figure 1: Planar potential flow of a source (at the origin) in a uniform stream showing streamlines and the Rankine Half-body in red.

Figure 1 shows typical streamlines including, in red, the streamline that defines a Rankine half-body; it is the streamline that crosses the x axis (which is also a streamline) at the front stagnation point, S. First we identify the distance between the front stagnation point, S, and the origin, d, by noting that, on the negative x axis, $\theta=\pi$ and therefore the velocity, u_{r}, is given by

$$
\begin{equation*}
\left(u_{r}\right)_{\theta=0}=-U+\frac{Q}{2 \pi r} \tag{Bgde4}
\end{equation*}
$$

and therefore $\left(u_{r}\right)_{\theta=0}$ is zero when $r=Q / 2 \pi U$. Therefore $d=Q / 2 \pi U$. Next we note that the value of the streamfunction on the negative x axis is $\psi=Q / 2$ and this must also be the value of the streamfunction
on the Rankine half-body streamline surface. Therefore shape of the Rankine half-body is given by the equation

$$
\begin{equation*}
(\psi)_{\text {Rankine halfbody }}=\frac{Q}{2}=U r \sin \theta+\frac{Q \theta}{2 \pi} \tag{Bgde5}
\end{equation*}
$$

On the y axis, $\theta=\pi / 2$, this yields $y=Q / 4 U$ so the distance c indicated in Figure 1 is $c=Q / 4 U$. Finally we might ask for the half-width, b, of the Rankine halfbody far downstream as $x \rightarrow \infty$. Equation (Bgde5) demonstrates that as $\theta \rightarrow 0$ the y coordinate of the half-body must asymptote to $Q / 2 U$ and therefore b, the half-width of the body far downstream, must be $Q / 2 U$. Clearly this is in accord with volume flow rate from the source acquiring the uniform stream velocity far downstream. From these geometric evaluations it is clear that there is a family of shapes of Rankine half-bodies that become increasingly streamlined as the dimension Q / U becomes smaller.

