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Axisymmetric Flow

We now turn to inviscid, incompressible, axisymmetric potential flow. Using cylindrical coordinates,
(r, θ, z), where r = 0 is the axis of the axisymmetric flow and (ur, uθ, uz) are the velocities in those (r, θ, z)
directions the continuity equation (see equation (Bce11)) is
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and this allows the definition of another stream function, ψ, known as Stokes’ stream function (different
from the stream function used in planar flow) defined as
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and whose definition automatically assures that the continuity equation (Bgfa1) is satisfied.

For future reference we also note that the vorticity components in incompressible axisymmetric flow (see
equations (Bba27) to (Bba29) with ∂/∂θ terms set to zero) are
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and in the absence of swirl (uθ = 0) only the θ component remains:

ωr = ωz = 0 and ωθ = ω =
∂ur

∂z
− ∂uz

∂r
(Bgfa6)

Deleting the viscous terms and absorbing the force field terms into the pressure, the equations of motion
(equations (Bhg1) to (Bhg3)) yield
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Note that the last terms on the left hand sides of equations (Bfga7) and (Bfga8), namely u2
θ/r and uθur/r,

are due to the centripetal and Corioli’s components of acceleration. Setting ∂/∂θ terms equal to zero for
axisymmetric flow, equations (Bgfa7) to (Bgfa9) become
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Moreover, if the flow is steady:

ur
∂ur

∂r
+ uz

∂ur

∂z
− u2

θ

r
= −1

ρ

∂p

∂r
(Bgfa13)

ur
∂uθ

∂r
+ uz

∂uθ

∂z
+
uθur

r
= 0 (Bgfa14)

ur
∂uz

∂r
+ uz

∂uz

∂z
= −1

ρ

∂p

∂z
(Bgfa15)

At this point we note that, in cylindrical coordinates, the Lagrangian derivative (equation (Bab2)) is

D

Dt
=

∂

∂t
+ ur

∂

∂r
+
uθ

r

∂

∂θ
+ uz

∂

∂z
(Bgfa16)

which, for axisymmetric flow, becomes
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and therefore the equation of motion in the θ direction, equation (Bgfa11) or (Bgfa14), can be written as
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which simply states the following: if there is no swirl at any point on a given streamline so that uθ = 0,
then the swirl will be zero all along that streamline. Moreover if there is swirl on a given streamline so
that uθ �= 0 then the value of uθ on that streamline will only change due to stretching of the vorticity as
the radius increases (or the reverse). We note that both of these results also follow from Kelvin’s theorem
described and derived in section (Bdj). To see this, consider the circulation Γ around a contour that is a
circle of radius r whose center lies on the axis of the axisymmetric flow and whose plane is perpendicular
to that axis. Therefore Γ = 2πruθ and from Kelvin’s theorem

DΓ

Dt
= 0 (Bgfa19)

it follows that
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which, after manipulation using the expression for the Lagrangian derivative, leads directly to the result
(Bgfa18).

***

The sections which follow detail some of the characteristics of both axisymmetric flows without swirl and
axisymmetric flows with swirl.


