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Introduction to Open Channel Flow

Open channel flows refer to liquid flows that are confined to rivers or open channels by the action of gravity.
They involve an upper free surface exposed to a gaseous environment (or vacuum) and may therefore
feature the propagation of waves. Consequently, before more detailed analyses of open channel flows we
need to begin by establishing some necessary background on wave propagation at a free surface. The first
installments of this essential background are to be found in sections (Bgcd) to (Bgcf) which are also listed
in the index for this major topic. In section (Bgcd) the propagation speed, c, of small amplitude waves
of wavelength, λ, in an ocean of depth, H, was derived within the context of incompressible, irrotational
flow, namely

c = (gλ tanh (2πH/λ)/2π)
1
2 (Bpa1)

where g is the acceleration due to gravity. When the wavelength, λ, is much smaller than the depth, H,
the waves are referred to as deep water waves and the propagation speed becomes

c → (gλ/2π)
1
2 (Bpa2)

In contrast when λ � H, the waves are known as shallow water waves and the propagation speed is:

c → (gH)
1
2 (Bpa3)

In open channel flow we will be primarily concerned with shallow water waves.

An alternative derivation of the shallow water wave propagation speed can be obtained from a simple
one-dimensional analysis of an open-channel flow. As depicted in Figure 2, we select a control volume
that spans the full depth, H(x), of the open channel flow but with a dimension dx in the direction of the
flow. We make the assumption that the variations in the flow characteristics (velocity, density) with depth
can be neglected so the flow is completely characterized by the functions, H(x), and the depth-averaged
velocity, u(x), in the x-direction. For simplicity, unit breadth normal to Figure 2 will be assumed. We will
examine the velocity of a small disturbance propagating with velocity, c, into a fluid at rest as depicted on
the left in Figure 2. However, it is convenient to make a Galilean transformation to a frame in which the
propagating wave is fixed as shown on the right in Figure 2. Then conservation of mass requires that

Figure 1: Small disturbance propagation: Left: In frame of right-hand fluid. Right: In frame fixed in wave.

Hc = (c − du)(H + dH) or c dH = H du (Bpa4)



To apply the linear momentum equation to the control volume we must first evaluate the net force acting
on the control volume in the x direction. The force due to the hydrostatic pressure acting on the right side
of the control volume is ρgH2/2 while that on the left side is ρg(H + dH)2/2 so that the net hydrostatic
force is ρgHdH in the positive x direction (neglecting the terms quadratic in dH). We neglect any viscous
forces that may act at the solid boundary (see section (Bpe)). The momentum flux in through the lefthand
boundary is −ρ(c − du)2(H + dH) and out through the right-hand boundary is ρc2H. Consequently the
linear momentum theorem yields

ρc2H − ρ(c − du)2(H + dH) = ρcHdu = ρg H dH or c du = g dH (Bpa5)

where we have neglected all terms that are quadratic in the small quantities, du, dH. Eliminating du from
equations (Bpa4) and (Bpa5) leaves

ρc2H − ρ(c − du)2(H + dH) = ρcHdu = ρg H dH or c2 = gH (Bpa6)

as in equation (Bpa3). In the sections that follow we will present similar analyses that incorporate finite
amplitude disturbances and that include viscous forces acting on the bottom of the control volume. We
note that typical velocities, c, are commensurate with our everyday experience with open channel flows.
For example, the wave velocity in a 1m deep open channel flow is just over 3m/s.

It follows that open channel flows with the wave propagation velocity of (gH)1/2 are quite analogous to
compressible flows with wave velocity equal to the speed of sound. We define a parameter analogous to the
Mach number that is called the Froude number, Fr = u/(gH)1/2, so that open channel flows with Fr < 1
are termed subcritical flows while those with Fr > 1 are termed supercritical flows. Supercritical flows are
characterized by the fact that disturbances cannot propagate upstream. In the next section we investigate
compression waves and expansion waves in open channel flow much as we studied these processes in the
context of compressible flows in section (Boe). We also remark that the equivalent of shock waves are the
tidal bores illustrated in Figures 2 and 3, hydraulic jumps and other open channel shock waves.

Figure 2: Tidal bore in Morecambe Bay, UK. Photograph by Arnold Price.



Figure 3: Tidal bore in Moncton, Bay of Fundy, Canada. Photograph by Charles LeGresley.


