An Internet Book on Fluid Dynamics

Kelvin's Theorem

Kelvin's theorem is an outgrowth of the previously described properties of vorticity and circulation. It

Figure 1: Circulation around an arbitrary closed contour in a flow.
states that the circulation, Γ, around any closed contour, C, in the inviscid flow of a barotropic fluid with conservative body forces does not change with time. Recall that for any closed contour, C (see Figure 1), the circulation is defined as the line integral of the tangential velocity around any closed contour, C, in the flow:

$$
\begin{equation*}
\Gamma=\oint_{C} u_{s} d s=\oint_{C} \underline{u} \cdot \underline{d s} \tag{Bdj1}
\end{equation*}
$$

where \underline{u} is the fluid velocity vector, $\underline{d s}$ is an vector element along the closed contour and the circle on the integral sign indicates a closed contour. Taking the Lagranian derivative of this yields

$$
\begin{equation*}
\frac{D \Gamma}{D t}=\oint_{C} \frac{D \underline{u}}{D t} \cdot \underline{d s}+\oint_{C} \underline{u} \cdot \frac{D \underline{d s}}{D t} \tag{Bdj2}
\end{equation*}
$$

The governing equation for an inviscid fluid with conservative body forces (see equation (Bdb4)) is

$$
\begin{equation*}
\frac{D \underline{u}}{D t}=\left\{\frac{\partial \underline{u}}{\partial t}+(\underline{u} \cdot \nabla) \underline{u}\right\}=-\frac{1}{\rho} \nabla p+\nabla \mathcal{U} \tag{Bdj3}
\end{equation*}
$$

where \mathcal{U} is the body force potential.
Using this, the first term on the right hand side of equation (Bjd2) becomes

$$
\begin{equation*}
\oint_{C} \frac{D \underline{u}}{D t} \cdot \underline{d s}=\int_{A} \nabla \times\left(-\frac{1}{\rho} \nabla p+\nabla \mathcal{U}\right) \cdot \underline{n} d S=\int_{A} \frac{1}{\rho^{2}}(\nabla \rho \times \nabla p) \cdot \underline{n} d S=0 \tag{Bdj4}
\end{equation*}
$$

where Stokes' theorem has been used to convert the line integral to a surface integral over the area A enclosed by the contour C, \underline{n} is a unit normal to that surface and $d S$ is an element of A. When that area cuts through an object the subsequent analysis must be changed but we will postpone discussion of this until later; for now it is assumed that A can be created wholly within the fluid. The end result on the right of equation (Bdj4) follows from the assumption of a barotropic fluid.

The second term on the right hand side of equation $(\operatorname{Bjd} 2)$ can be developed using the identity $D \underline{d s} / D t=$ $(\underline{d s} . \nabla) \underline{u}$ and Stokes' theorem to yield:

$$
\begin{equation*}
\oint_{C} \underline{u} \cdot \frac{D \underline{d s}}{D t}=\oint_{C} \underline{u} \cdot\{(\underline{d s} \cdot \nabla) \underline{u}\}=\oint_{C} \nabla\left(|\underline{u}|^{2}\right) \cdot \underline{d s}=0 \tag{Bdj5}
\end{equation*}
$$

Using both results (Bdj4) and (Bdj5) we have proved that

$$
\begin{equation*}
\frac{D \Gamma}{D t}=0 \tag{Bdj6}
\end{equation*}
$$

for an inviscid fluid with conservative body forces.

