An Internet Book on Fluid Dynamics

Euler's Equations of Motion in other coordinates

In cylindrical coordinates, (r, θ, z), Euler's equations of motion for an inviscid fluid become:

$$
\begin{gather*}
\rho\left[\frac{D u_{r}}{D t}-\frac{u_{\theta}^{2}}{r}\right]=-\frac{\partial p}{\partial r}+f_{r} \tag{Bdc1}\\
\rho\left[\frac{D u_{\theta}}{D t}+\frac{u_{\theta} u_{r}}{r}\right]=-\frac{1}{r} \frac{\partial p}{\partial \theta}+f_{\theta} \tag{Bdc2}\\
\rho \frac{D u_{z}}{D t}=-\frac{\partial p}{\partial z}+f_{z} \tag{Bdc3}
\end{gather*}
$$

where u_{r}, u_{θ}, u_{z} are the velocities in the r, θ, z directions, p is the pressure, ρ is the fluid density and f_{r}, f_{θ}, f_{z} are the body force components. The Lagrangian derivative is

$$
\begin{equation*}
\frac{D}{D t}=\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial}{\partial \theta}+u_{z} \frac{\partial}{\partial z} \tag{Bdc4}
\end{equation*}
$$

For reference and completeness note that for an incompressible fluid the equation of continuity in cylindrical coordinates is

$$
\begin{equation*}
\frac{1}{r} \frac{\partial}{\partial r}\left(r u_{r}\right)+\frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta}+\frac{\partial u_{z}}{\partial z}=0 \tag{Bdc5}
\end{equation*}
$$

In spherical coordinates, (r, θ, ϕ), Euler's equations of motion for an inviscid fluid become:

$$
\begin{gather*}
\rho\left\{\frac{D u_{r}}{D t}-\frac{u_{\theta}^{2}+u_{\phi}^{2}}{r}\right\}=-\frac{\partial p}{\partial r}+f_{r} \tag{Bdc6}\\
\rho\left\{\frac{D u_{\theta}}{D t}+\frac{u_{\theta} u_{r}}{r}-\frac{u_{\phi}^{2} \cot \theta}{r}\right\}=-\frac{1}{r} \frac{\partial p}{\partial \theta}+f_{\theta} \tag{Bdc7}\\
\rho\left\{\frac{D u_{\phi}}{D t}+\frac{u_{\phi} u_{r}}{r}+\frac{u_{\theta} u_{\phi} \cot \theta}{r}\right\}=-\frac{1}{r \sin \theta} \frac{\partial p}{\partial \phi}+f_{\phi} \tag{Bdc8}
\end{gather*}
$$

where $u_{r}, u_{\theta}, u_{\phi}$ are the velocities in the r, θ, ϕ directions, p is the pressure, ρ is the fluid density and $f_{r}, f_{\theta}, f_{\phi}$ are the body force components. The Lagrangian or material derivative is

$$
\begin{equation*}
\frac{D}{D t}=\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial}{\partial \theta}+\frac{u_{\phi}}{r \sin \theta} \frac{\partial}{\partial \phi} \tag{Bdc9}
\end{equation*}
$$

For completeness the equation of continuity for an incompressible fluid in spherical coordinates is

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} u_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(u_{\theta} \sin \theta\right)+\frac{1}{r \sin \theta} \frac{\partial u_{\phi}}{\partial \phi}=0 \tag{Bdc10}
\end{equation*}
$$

