Example: Fire Hose with a Bend

Building on the analysis of a simple nozzle we consider the application of the momentum theorem to a fire hose with a 90° bend and a nozzle as sketched in Figure 1. For simplicity, it is assumed that the velocity magnitudes, q_1 and q_2 , are uniform across the inlet area, A_1 , and the jet area, A_2 , respectively. The fluid is incompressible with density ρ and viscous losses within the hose and the nozzle are negligible as are the effects of gravity. We wish to evaluate the forces F_1^* and F_2^* required to hold the structure in place as shown in the figure.

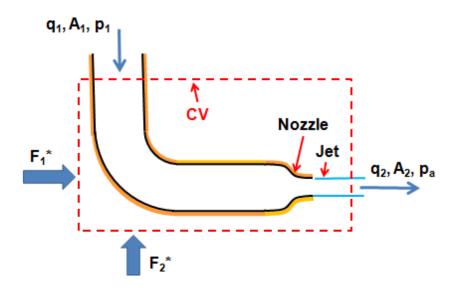


Figure 1: A fire hose with bend and nozzle.

It follows from the linear momentum theorem that the force, F_1^* , that must be applied to the structure to hold it in place is

$$F_1^* = mq_2 = \rho A_2 q_2^2$$
 (Bed1)

and the force, F_2^* , is

$$F_2^* = -m(-q_1) + A_1(p_1 - p_a)$$
(Bed2)

Making use of continuity and the Bernoulli equation for incompressible, inviscid flow these can be written as

$$F_1^* = \rho A_2 q_2^2$$
 and $F_2^* = \frac{\rho q_2^2 (A_1^2 + A_2^2)}{2A_1}$ (Bed3)

or in terms of the pressure difference

$$F_1^* = \frac{2A_1^2A_2(p_1 - p_a)}{(A_1^2 - A_2^2)}$$
 and $F_2^* = \frac{A_1(A_1^2 + A_2^2)(p_1 - p_a)}{(A_1^2 - A_2^2)}$ (Bed4)

The force F_1^* is intuitively obvious and will need to be supplied by a structural brace at the bend that is not shown; the force F_2^* will be the force that could be transmitted through the structure of the inlet hose at the top of the sketch.