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The Connection between Drag and the Wake

An important result which can be derived using the momentum theorem (and represents a good example
illustrating the value of the momentum theorem) is the connection between the drag on a finite object in
a uniform stream and the wake which that object produces. Consider the object shown in black outline
in the figure below: The outline of the wake, defined below, is shown in blue. Surrounding the object

Figure 1: Definition of the control surfaces surrounding and oject and its wake.

and its wake we draw a large cylindrical control volume as shown by the dashed red lines. The various
components of the surface of this control volume are labelled Su1, Su2, Sd1, Sd2, and S0. The surfaces Su1

and Su2 are flat and coplanar as are Sd1 and Sd2; all four are normal to the oncoming uniform stream, U ,
and we will denote the velocity normal to these surfaces by u. On the other hand S0 is everywhere parallel
with U and we will denote the velocity normal to that surface (and to U) by un.

All these boundaries of the control volume are assumed sufficiently distant from the body so that the
pressure and density, ρ, on all these surfaces are equal to the upstream pressure and density in the uniform
stream (see further comment below). They are also sufficiently far away so that the u velocity on all these
surfaces except Sd2 is equal to U . Indeed this is what defines the boundary of the wake, namely that within
the component of the surface area Sd2, the velocity u may be different from U . Then for convenience we
also define the surface element Su2 as the projection of Sd2 onto the upstream surface of the control volume
as shown by the dashed mauve lines.

With these definitions we are ready to apply the continuity relation and the momentum theorem in the U
direction. Assuming that the flow is steady so that the mass of fluid inside the control volume is unchanging
then conservation of mass requires that∫

Su1+Su2

ρudS −
∫

Sd1+Sd2

ρudS −
∫

S0

ρundS = 0 (Bee1)



Since u = U on Su1, Su2 and Sd1 it follows that the integrals over Su1 and Sd1 cancel and this relation
reduces to ∫

Sd2

ρ(U − u)dS =

∫
S0

ρundS (Bee2)

Now we apply the momentum thereom in the U direction to obtain the total force F acting on the contents
of the control volume (which includes the body and the wake) in the U direction:

F = −
∫

Su1+Su2

ρu2dS +

∫
Sd1+Sd2

ρu2dS +

∫
S0

ρUundS (Bee3)

As with the continuity equation, since u = U on Su1, Su2 and Sd1 the integrals over Su1 and Sd1 cancel
and the above equation reduces to

F =

∫
Sd2

ρ(u2 − U2)dS + U

∫
S0

ρundS (Bee4)

where the U in the second term is uniform and can therefore be taken outside of the integral. By sub-
stituting for the integral in the second term from the result obtained from the continuity equation we
obtain

F =

∫
Sd2

ρ(u2 − U2)dS + U

∫
Sd2

ρ(U − u)dS (Bee5)

or

F = −
∫

Sd2

ρu(U − u)dS (Bee6)

Finally we must consider the various possible contributions to the total force, F , acting on the control
volume and its contents in the U direction. It is assumed that the flow has a sufficiently high Reynolds
number so that the shear stresses acting on S0 are negligible and so that there are no significant viscous
contributions to the normal stresses on Su1, Su2, Sd1, and Sd2. Thus the only pertinent forces acting on the
external surface of the control volume are those due to the pressure on Su1, Su2, Sd1, and Sd2. Moreover
it is assumed that these surfaces are sufficiently far from the body that the pressure on all four surfaces is
equal to the pressure in the uniform stream. It follows that there is no contribution of the pressures to F .
Consequently if we neglect contributions from body forces such as gravity (or assume U is horizontal), the
only contribution to F is the force that must be applied to the body to hold it in place against the drag
force, D, imposed on the body by the flow. Consequently F = −D and

D =

∫
Sd2

ρu(U − u)dS (Bee7)

This result clearly demonstrates the connection between the drag and the wake the body creates. If there
were no wake so that u = U within Sd2 then the drag would be zero. Also the drag is greater the larger
the wake or the larger the “velocity defect in the wake”, (U − u).

It follows that a passive object which is being held in a wind or water tunnel by a strut support will
produce a wake such as that shown in figure 2 where knowledge of the velocity profile in the wake would
allow evaluation of the integral in the above equation and therefore measurement of the drag. Indeed this
is one technique which has been used to measure the drag in such experiments.

Finally we note that if the body is a self-propelled object such as an aeroplane or a submarine it must
necessarily follow that the net force, F , on that object must be zero. It follows that the integral in the above
equation must be zero and therefore the form of the velocity profile in the wake of a self-propelled object



Figure 2: Typical velocity profile in a high Reynolds number wake.

Figure 3: Typical velocity profile in the momentumless wake behind a self-propelled body.

must reflect this conclusion. Such wakes in which the integral of u(U−u) is zero are called “momentumless
wakes” and must have regions in which u > U as well as regions in which u < U in order for the integral
to be zero. And example is shown in figure 3 where one could visualize the region in the center of the
wake in which u > U as resulting from the single propellor behind a submarine while the hull produces
the regions in which u < U surrounding the propeller wake.


