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Differential form of continuity

In the second or differential approach to the invocation of the conservation of mass, we consider a
small Eulerian control volume of fluid within the flow that measures dx× dy × dz in some fixed Cartesian
coordinate system. Depicted in figure 1, this volume must be small compared with the typical spatial
distance within the flow over which substantial changes in the velocities, pressure, etc. vary. However it
must also be large compared with the molecular dimensions and mean free paths of the molecules of the
fluid, so that it becomes sensible to characterize the fluid motion (and other properties) using continuum
quantities. It should be noted that, though such intermediate scales between the global flow scale and
the molecular scale can be found in many practical problems, there are flows for which it is not possible
to identify such an intermediate scale. In such circumstances one must resort to other methodologies to
apply the conservation laws.

Figure 1: Infinitesmal Eulerian control volume.

Assuming the continuum approximation is valid, we then consider the flux of mass into the differential
control volume and equate it with the rate of increase of mass inside the control volume. Consider first
the flux of mass through the two sides perpendicular to the x−axis. We will define u as the velocity in
the x−direction at the center of lefthand of these two sides. Similarly we define the density of the fluid
at the center of lefthand side as ρ. Then the flux of mass into the control volume through that lefthand
side is given by ρudy dz. Then it follows that by Taylor’s series (neglecting all terms of order (dx)2 and
higher which can be shown to have no contribution to the result) the flux of mass out of the control volume
through the righthand side is given by [ρu + {∂(ρu)/∂x}dx]dy dz. Combining the fluxes through these
two sides perpendicular to the x-direction, it follows that the net flux of mass out of the control volume
through the sides perpendicular to the x-direction is {∂(ρu)/∂x}dx dy dz. The fluxes through the other
two pairs of sides follow from a similar construction so that the net flux of mass out of the control volume
through all of its sides becomes{
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By conservation of mass this must be equal to minus the rate of increase of mass inside the control volume.
Since the mass inside the control volume is ρ dx dy dz the differential form of the continuity equation
becomes {
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where we must use the Eulerian time derivative since the control volume is defined as an Eulerian volume.
Re-arranging and cancelling the differential form of the continuity equation becomes
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or in tensor notation
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or in vector notation
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If the flow is steady these clearly reduce to

∂(ρu)

∂x
+

∂(ρv)

∂y
+

∂(ρw)

∂z
=

∂(ρuj)

∂xj
= 0 or ∇.(ρu) = 0 (Bcd6)

If the fluid is incompressible (whether steady or not) they reduce to
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These are the differential forms of the continuity equation in a rectangular Cartesian coordinate system.
There are also many problems in which it is much more convenient to use an alternate coordinate system
such as a polar coordinate system, a cylindrical coordinate system or a spherical coordinate system. We
detail the forms of the continuity equation in these alternate coordinate systems on another page.


