Navier-Stokes Equations in Cylindrical Coordinates

In cylindrical coordinates, (r, θ, z), the Navier-Stokes equations of motion for an incompressible fluid of constant dynamic viscosity, μ, and density, ρ, are

$$
\begin{gather*}
\rho\left[\frac{D u_{r}}{D t}-\frac{u_{\theta}^{2}}{r}\right]=-\frac{\partial p}{\partial r}+f_{r}+\mu\left[\nabla^{2} u_{r}-\frac{u_{r}}{r^{2}}-\frac{2}{r^{2}} \frac{\partial u_{\theta}}{\partial \theta}\right] \tag{Bhg1}\\
\rho\left[\frac{D u_{\theta}}{D t}+\frac{u_{\theta} u_{r}}{r}\right]=-\frac{1}{r} \frac{\partial p}{\partial \theta}+f_{\theta}+\mu\left[\nabla^{2} u_{\theta}-\frac{u_{\theta}}{r^{2}}+\frac{2}{r^{2}} \frac{\partial u_{r}}{\partial \theta}\right] \tag{Bhg2}\\
\rho \frac{D u_{z}}{D t}=-\frac{\partial p}{\partial z}+f_{z}+\mu \nabla^{2} u_{z} \tag{Bhg3}
\end{gather*}
$$

where u_{r}, u_{θ}, u_{z} are the velocities in the r, θ, z cylindrical coordinate directions, p is the pressure, f_{r}, f_{θ}, f_{z} are the body force components in the r, θ, z directions and the operators $D / D t$ and ∇^{2} are

$$
\begin{align*}
& \frac{D}{D t}=\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial}{\partial \theta}+u_{z} \frac{\partial}{\partial z} \tag{Bhg4}\\
& \nabla^{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}+\frac{\partial^{2}}{\partial z^{2}} \tag{Bhg5}
\end{align*}
$$

