An Internet Book on Fluid Dynamics

Derivation of relation between the time derivatives

Here we derive the relation between the Lagrangian and Eulerian time derivatives. Consider the Lagrangian fluid particle that occupies the point O in some fixed Eulerian framework at time $t=0$. If the vector velocity of the fluid at this point and time is denoted by \underline{u} then a short time δt later the fluid particle will be displaced to the point O^{\prime} where the vector $O O^{\prime}$ is given by $\underline{u} \delta t$. In a Cartesian framework with its origin at O, the coordinates of the point O^{\prime} will be ($\delta x=u \delta t, \delta y=v \delta t, \delta z=w \delta t$).

Now consider the Lagrangian and Eulerian time derivatives of some general transportable property in the fluid motion that we will denote by Q. By definition, the Eulerian time derivative of Q at O is simply $\partial Q / \partial t$. By contrast the Lagrangian time derivative, $D Q / D t$ will be given by

$$
\begin{equation*}
\frac{D Q}{D t}=\left[\frac{\{Q\}_{O^{\prime}, t=\delta t}-\{Q\}_{O, t=0}}{\delta t}\right]_{\delta t \rightarrow 0} \tag{Bad1}
\end{equation*}
$$

which, using the first two terms in a Taylor series expansion to write $\{Q\}_{O^{\prime}, t=\delta t}$ in terms of quantities evaluated at O at time $t=0$, leads to

$$
\begin{equation*}
\frac{D Q}{D t}=\left[\frac{Q+\frac{\partial Q}{\partial t} \delta t+\frac{\partial Q}{\partial x} \delta x+\frac{\partial Q}{\partial y} \delta y+\frac{\partial Q}{\partial z} \delta z-Q}{\delta t}\right]_{\delta t \rightarrow 0} \tag{Bad2}
\end{equation*}
$$

where all quantities are now evaluated at O and time $t=0$; all second and higher order terms in the Taylor series expansion have been omitted since they disappear when $\delta t \rightarrow 0$.

Substituting for $\delta x, \delta y$, and δz using $\delta x=u \delta t, \delta y=v \delta t$, and $\delta z=w \delta t$ and then taking the limit as $\delta t \rightarrow 0$ leads to

$$
\begin{equation*}
\frac{D Q}{D t}=\frac{\partial Q}{\partial t}+u \frac{\partial Q}{\partial x}+v \frac{\partial Q}{\partial y}+w \frac{\partial Q}{\partial z} \tag{Bad3}
\end{equation*}
$$

Consequently the fundamental relationship between the Lagrangian and Eulerian time derivatives is

$$
\begin{align*}
\frac{D}{D t} \equiv \frac{\partial}{\partial t} & +u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}+w \frac{\partial}{\partial z} \\
& \equiv \frac{\partial}{\partial t}+u_{j} \frac{\partial}{\partial x_{j}} \\
& \equiv \frac{\partial}{\partial t}+(\underline{u} \cdot \nabla) \tag{Bad4}
\end{align*}
$$

where both the tensor and vector forms will be used in the material that follows.

