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Derivation of relation between the time derivatives

Here we derive the relation between the Lagrangian and Eulerian time derivatives. Consider the Lagrangian
fluid particle that occupies the point O in some fixed Eulerian framework at time t = 0. If the vector
velocity of the fluid at this point and time is denoted by u then a short time δt later the fluid particle
will be displaced to the point O′ where the vector OO′ is given by uδt. In a Cartesian framework with its
origin at O, the coordinates of the point O′ will be (δx = uδt, δy = vδt, δz = wδt).

Now consider the Lagrangian and Eulerian time derivatives of some general transportable property in the
fluid motion that we will denote by Q. By definition, the Eulerian time derivative of Q at O is simply
∂Q/∂t. By contrast the Lagrangian time derivative, DQ/Dt will be given by
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which, using the first two terms in a Taylor series expansion to write {Q}O′,t=δt in terms of quantities
evaluated at O at time t = 0, leads to
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where all quantities are now evaluated at O and time t = 0; all second and higher order terms in the Taylor
series expansion have been omitted since they disappear when δt → 0.

Substituting for δx, δy, and δz using δx = uδt, δy = vδt, and δz = wδt and then taking the limit as δt → 0
leads to
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Consequently the fundamental relationship between the Lagrangian and Eulerian time derivatives is
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where both the tensor and vector forms will be used in the material that follows.


