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Some Simple Transfer Matrices

The flow of an incompressible fluid in a straight, rigid pipe will be governed by the following versions of
equations (Bnfb1) and (Bnfb2):
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If the velocity fluctuations are small compared with the mean velocity denoted by U (positive in direction
from inlet to discharge), and the term u|u| is linearized, then the above equations lead to the transfer
function
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where (R + jωL) is the “impedance” made up of a “resistance”, R, and an “inertance”, L, given by
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where A, a, and � are the cross-sectional area, radius, and length of the pipe. A number of different pipes
in series would then have
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where Q is the mean flow rate. For a duct of non-uniform area
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Note that all such ducts represent reciprocal and symmetric components.

A second, common hydraulic element is a simple “compliance”, exemplified by an accumulator or a surge
tank. It consists of a device installed in a pipeline and storing a volume of fluid, VL, which varies with the
local pressure, p, in the pipe. The compliance, C , is defined by

C = ρ
dVL

dp
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In the case of a gas accumulator with a mean volume of gas, V̄G, which behaves according to the polytropic
index, k, it follows that

C = ρV̄G/kp̄ (Bngg8)

where p̄ is the mean pressure level. In the case of a surge tank in which the free surface area is AS, it
follows that

C = AS/g (Bngg9)

The relations across such compliances are

m̃2 = m̃1 − jωCp̃T ; p̃T
1 = p̃T

2 = p̃T (Bngg10)



Therefore, using the definition (Bngc6), the transfer function [T ] becomes
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Again, this component is reciprocal and symmetric, and is equivalent to a capacitor to ground in an
electrical circuit.

Systems made up of lumped resistances, R, inertances, L, and compliances, C , will be termed LRC systems.
Individually, all three of these components are both reciprocal and symmetric. Models of such systems
are termed ”Lumped Parameter Models” and these are frequently employed to analyze unsteady flows in
internal flow systems. We note that any system comprised of these components will also be reciprocal
(see the section on “Properties of Transfer Matrices”); hence all LRC systems are reciprocal. Note also
that, even though individual components are symmetric, LRC systems are not symmetric since series
combinations are not, in general, symmetric (see the section on “Properties of Transfer Matrices”).

An even more restricted class of systems are those consisting only of inertances, L, and compliances, C .
These systems are termed “dissipationless” and have some special properties (see, for example, Pipes 1963)
though these are rarely applicable in hydraulic systems.

As a more complicated example, consider the frictionless (f = 0) compressible flow in a straight uniform
pipe of mean cross-sectional area, A0. This can readily be shown to have the transfer function
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where Ū is the mean fluid velocity, M = Ū/c is the Mach number, and θ is a reduced frequency given by

θ = ω�/c(1 −M2) (Bngg13)

Note that all the usual acoustic responses can be derived quite simply from this transfer function. For
example, if the pipe opens into reservoirs at both ends, so that appropriate inlet and discharge conditions
are p̃1 = p̃2 = 0, then the transfer function, equation (Bngc6), can only be satisfied with m̃1 �= 0 if T ∗

12 = 0.
According to equations (Bngg12), this can only occur if sin θ = 0, θ = nπ or

ω = nπc(1 − M2)
/
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which are the natural organ-pipe modes for such a pipe. Note also that the determinant of the transfer
matrix is

DT = DT ∗ = e2jθM (Bngg15)

Since no damping has been included, this component is an undamped distributed system, and is therefore
quasi-reciprocal. At low frequencies and Mach numbers, the transfer function (Bngg12) reduces to
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and so consists of an inertance, �/A0, and a compliance, A0�/c
2.

When friction is included (as is necessary in most water-hammer analyses) the transfer function becomes

T ∗
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in which f∗ = f�M/2a(1 − M2) and k1, k2 are the solutions of

k2 − kM(2jθ + f∗) − jθ(1 − M2)(jθ + f∗) = 0 (Bngg18)

The determinant of this transfer matrix [T ∗] is

DT ∗ = ek1+k2 (Bngg19)

Note that this component is only quasi-reciprocal in the undamped limit, f → 0.


