An Internet Book on Fluid Dynamics

VORTEX FLOW

Some useful exact solutions to the Navier-Stokes equations also emerge from flows in cylindrical coordinates in which the only non-zero component of velocity is the circumferential velocity, u_{θ}. These are vortex flows which, as depicted in Figure 1 could either have an exterior cylindrical boundary, an interior cylindrical boundary or both. In planar flow and polar coordinates, the continuity equation (Bce7) simply yields

[B]

Figure 1: Three types of vortical flow.
$\partial u_{\theta} / \partial \theta=0$ which could be regarded as obvious since otherwise u_{θ} would be double-valued. The NavierStokes equations in section (Bhg) with $u_{r}=u_{z}=0$, derivatives in the z direction set equal to zero and derivatives in the θ direction set equal to zero since otherwise quantities would be double-valued, simply reduce to two consequential equations

$$
\begin{equation*}
\rho \frac{u_{\theta}^{2}}{r}=\frac{\partial p}{\partial r} \tag{Bie1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial u_{\theta}}{\partial t}=\nu\left\{\frac{\partial^{2} u_{\theta}}{\partial r^{2}}+\frac{1}{r} \frac{\partial u_{\theta}}{\partial r}-\frac{u_{\theta}}{r^{2}}\right\} \tag{Bie2}
\end{equation*}
$$

We will focus on the steady flows that emerge from these equations though there are unsteady flows that involve the viscosity. The second equation (Bie2) can be simply solved to yield

$$
\begin{equation*}
u_{\theta}=C_{1} r+\frac{C_{2}}{r} \tag{Bie3}
\end{equation*}
$$

where C_{1} and C_{2} are constants to be determined by the boundary conditions. The equation (Bie1) can be integrated to yield

$$
\begin{equation*}
\frac{p}{\rho}=\frac{C_{1}^{2} r^{2}}{2}+2 C_{1} C_{2} \ln r-\frac{C_{2}^{2}}{2 r^{2}}+C_{3} \tag{Bie4}
\end{equation*}
$$

where C_{3} is another integration constant. Now we apply the boundary conditions to each of the three types of flow sketched in Figure 1:
[A] Type [A] flow requires $u_{\theta}=U$ on $r=R$ and non-infinite velocity as $r \rightarrow \infty$ therefore

$$
\begin{equation*}
C_{1}=0 \quad \text { and } \quad C_{2}=R U \tag{Bie5}
\end{equation*}
$$

This is simply a potential or "free" vortex. The pressure distribution associated with it is

$$
\begin{equation*}
\frac{\left(p-p_{\infty}\right)}{\rho}=-\frac{R^{2} U^{2}}{2 r^{2}} \tag{Bie6}
\end{equation*}
$$

where p_{∞} is the pressure at infinity.
[B] Type [B] flow requires $u_{\theta}=U$ on $r=R$ and non-infinite velocity as $r \rightarrow 0$ therefore

$$
\begin{equation*}
C_{1}=\frac{U}{R} \quad \text { and } \quad C_{2}=0 \tag{Bie7}
\end{equation*}
$$

This is simply solid body rotation or a "forced" vortex. The pressure distribution associated with it is

$$
\begin{equation*}
\frac{\left(p-p_{0}\right)}{\rho}=\frac{U^{2} r^{2}}{2 R^{2}} \tag{Bie8}
\end{equation*}
$$

where p_{0} is the pressure at the center.
[C] Type [C] flow requires $u_{\theta}=U_{1}$ on $r=R_{1}$ and $u_{\theta}=U_{2}$ on $r=R_{2}$ therefore

$$
\begin{equation*}
C_{1}=\frac{\left(R_{2} U_{2}-R_{1} U_{1}\right)}{\left(R_{2}^{2}-R_{1}^{2}\right)} \quad \text { and } \quad C_{2}=\frac{R_{1} R_{2}\left(R_{2} U_{1}-R_{1} U_{2}\right)}{\left(R_{2}^{2}-R_{1}^{2}\right)} \tag{Bie9}
\end{equation*}
$$

This is mix of free and forced vortex in the gap between the cylinders.
None of these steady, exact solutions involve the viscosity.

