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Unsteady Propeller Flow

In this section we examine the unsteady flow through a propeller in a water tunnel. To include the
unsteady flow contributions it is necessary to revisit and revise the basic conservation results presented in
Section (Mfc). This is a necessary prerequisite to understanding global instabilities of propeller flows such
as the surge instability observed and documented by Duttweiler and Brennen (2002). Another potential
application is to the sometimes severe structural vibration that can arise due to the interaction between
a ship’s propeller and the wake of the hull. The body of work on propeller-hull interactions has been
summarized by Weitendorf (1989).

Figure 1: Schematic and notation of a propeller in a tunnel (the cavitation volume is shown in red).

Consider the one-dimensional unsteady, incompressible flow through a propeller (either cavitating or non-
cavitating) in a water tunnel as shown in Figure 1. The propeller (cross-sectional area Ap) is located on
the centerline of the tunnel whose cross-sectional area is A∗. We focus on the stream tube containing the
propeller. For simplicity, it will be assumed that the flow in the propeller streamtube is one-dimensional
and uniformly distributed within that stream tube. Friction and mixing losses between the inner and outer
flows are neglected.

The analysis parallels that for steady flow detailed in sections (Mfc) and (Mfg) and the notation is the
same as that used in those sections. Mass conservation requires that

vmi1A1 − vmp1Ap = −
∫ 0

−∞

∂A(x, t)

∂t
dx (Mfi1)

vmi2A2 − vmp2Ap =

∫ ∞

0

∂A(x, t)

∂t
dx (Mfi2)

vmp2Ap − vmp1Ap =
dVc

dt
dt (Mfi3)

vmi2A2 + vmo2(A
∗ − A2) − vmi1A

∗ =
dVc

dt
dt (Mfi4)

The right-hand-sides of equations (Mfi1) and (Mfi2) represent the volume change of the stream tube
upstream and downstream of the propeller; later these will be ignored for simplicity. The relation between



the pressures far upstream and far downstream is obtained by applying Bernoulli’s equation in the outer
flow as follows:

p2 − p2 =
1

2
ρ
{
v2

mi1 − v2
mo2

} − ρ

∫ ∞

−∞

∂vmo(x, t)

∂t
dx (Mfi5)

where the last term of the right-hand-side is the inertia effect in the control volume.

Now, we calculate the thrust force F produced by the propeller by applying three basic equations. First,
applying the momentum theorem to a control volume containing all the tunnel flow, we obtain;

ρv2
mi1A

∗ + p1A
∗ + F = ρv2

mo2(A
∗ − A2) + ρv2

mi2A2 + p2A
∗ +

dM

dt
(Mfi6)

The last term in the right-hand-side is rate of the change of the momentum in the control volume, repre-
sented by

dM

dt
= ρ

d

dt

[∫ ∞

−∞
{vmi(x, t)A(x, t) + vmo(x, t)(A∗ − A(x, t))}dx

]

= ρ
d

dt

[∫ ∞

0

dVc

dt
dx + A∗

∫ ∞

−∞
vmi1dx

]
= ρ

∫ ∞

0

d2Vc

dt2
dx + ρA∗

∫ ∞

−∞

dvmi1

dt
dx (Mfi7)

which yields

F =
1

2
ρ(vmi1 − vmo2)A

∗(2vmi2 + vmo2 − vmi1) + ρ(vmi2 + vmo2)
dVc

dt

+

[
ρA∗

∫ ∞

−∞

∂(vmi1 − vmo(x, t))

∂t
dx + ρ

∫ ∞

0

d2Vc

dt2
dx

]
(Mfi8)

Second, we obtain the total pressure difference across the propeller, ΔpT , from the Euler head,

ΔpT = ρRΩvθp2 = ρRΩ(RΩ − vmp2 cotβ) − ρ
c

sin β

dvmp2

dt
(Mfi9)

The last term in this equation represents the inertia effect of the fluid in the blade passage. Since the
static pressure difference, pp2 − pp1, is given by

pp2 − pp1 =
1

2
ρ
{
R2Ω2 − v2

mp2 cot β
}− ρ

c

sinβ

dvmp2

dt
(Mfi10)

the thrust force can be computed as

F = (pp2 − pp1)Ap + ρ
{
v2

mp2 − v2
mp1

}
Ap

=
1

2
ρ
{
R2Ω2 − v2

mp2 cotβ
}

Ap + ρ(vmp2 + vmp1)
dVc

dt
− ρ

Apc

sinβ

dvmp2

dt
(Mfi11)

Third, the pressures pp1 and pp2 may be related to the upstream and downstream conditions using
Bernoulli’s equation:

pp1 = p1 +
1

2
ρv2

mi1 −
1

2
ρv2

mp1 − ρ

∫ 0

−∞

∂vmi(x, t)

∂t
dx (Mfi12)

where the last term is the inertance in the stream tube. Applying Bernoulli’s equation between the outlet
of the propeller and far downstream, we obtain

pp2 = p2 +
1

2
ρ
[
v2

mi2 + v2
θp2(Ap/A2)

] − 1

2
ρ
[
v2

mp2 + v2
θp2

]
+ ρ

∫ ∞

0

∂vmi(x, t)

∂t
dx



= p2 +
1

2
ρv2

mi2 −
1

2
ρv2

mp2 +
1

2
ρ [RΩ − vmp2 cotβ]2 [(Ap/A2) − 1] + ρ

∫ ∞

0

∂vmi(x, t)

∂t
dx (Mfi13)

Then the thrust force F follows as

F = (pp2−pp1)Ap+ρ
{
v2

mp2 − v2
mp1

}
Ap

=
1

2
ρ
[{

v2
mi2 − v2

mo2

}
+ {RΩ − vmp2 cotβ}2 {(Ap/A2) − 1}]Ap

−1

2
ρ(vmp2 + vmp1)

dVc

dt
+ ρAp

∫ ∞

0

∂(vmi(x, t)− vmo(x, t))

∂t
dx (Mfi14)

For the purpose of the general discussion, we have considered all possible unsteady effects in the above

formulation, namely the effects of volume change of the stream tubes in equations (Mfi1) and (Mfi2), the
inertia effects upstream and downstream of the propeller in equations (Mfi5), (Mfi8) and (Mfi14), and the
inertia effect in the propeller in equation (Mfi11) as well as the effects of the cavity volume change dVc/dt
in equations (Mfi3) and (Mfi4). To evaluate many of these terms, it is necessary to know the shape of the
stream tube, which is beyond the scope of the present treatment. Some compromises could be implemented
in order to simplify the analysis. First, the stream tube volume changes in equations (Mfi1) and (Mfi2)
could be neglected on the basis that these cancel and thus produce no net perturbation within the propeller
installation. Second, based on other experiences, the inertance terms in equations (Mfi5), (Mfi8) and
(Mfi14) could be lumped into the inertance contributions from the flows upstream and downstream of the
propeller. On the other hand the unsteady effects caused by cavitation and associated with dVc/dt in
equations (Mfi3) and (Mfi4) can have important consequences and require further development.

Summarizing, the eight equations (Mfi1) through (Mfi14) represent the a dynamic model of the unsteady
flow through a propeller. The equations contain eight unknowns vmo2, vmi2, vmp2, vmp1, A1, A2, F , and p2

assuming that the propeller operating parameters vmi1, p1, RΩ, the discharge flow angle, β, and the rate of
change of the cavity volume, dVc/dt, are given. The empirical relations for the deviation angle that were
described in section (Mfg) could be used to supplement the model.

To complete the set of governing equations a functional expression for the cavity volume, Vc, is required
when cavitation is involved. Consistent with the understanding developed in the context of cavitating
pumps (Section Nrq) it is assumed that, at low frequencies at which a quasistatic approach is appropriate,
the cavity volume, Vc(pp1, vmp1), is a function of the inlet pressure pp1 and inflow velocity vmp1. Then, the
rate of change of the cavity volume can be expressed as

dVc

dt
= −K

dpp1

dt
− M

dvmp1

dt
(Mfi15)

where K = −∂Vc/∂pp1 and M = −∂Vc/∂vmp1 are respectively the cavitation compliance and the mass
flow gain factor (see Section (Nrq) and Brennen and Acosta 1973). These important parameters are
non-dimensionalized as follows;

K∗

2π
= −∂(Vc/ApR)

∂σ∗ =
ρRΩ2

2Ap

∂Vc

∂pp1
=

ρΩ2

2πR
K (Mfi16)

M∗ = − ∂(Vc/ApR)

∂(vmp1/RΩ)
=

Ω

Ap

∂Vc

∂vmp1
=

Ω

πR2
M (Mfi17)

where K∗ and M∗ are the non-dimensional values of the cavitation compliance and the mass flow gain
factor (Duttweiler and Brennen 2002). Analyses of the above system of equations demonstrate that K∗



and M∗ are functions of the dimensionless mean flow parameters, the advance ratio, J1, (or flow coefficient,
φ) and the cavitation number, σ and the reduced frequency, ω/Ω.

Estimated values for K∗/2π and M∗ for a cavitating propeller have been proposed by Otsuka et al. (1996)
and Watanabe et al. (1998). They examined the unsteady planar flow through a cavitating cascade using
free streamline methods (see Section (Nui)) and evaluated the cavity size per blade as a cross-sectional
area Vcpb (not a volume). This was then applied to the three-dimensional propeller flow using the crude
estimate Vc = ZRRVcpb/2. It transpired that the resulting values of K∗/2π and M∗ are primarily functions
of the parameter λ = σ∗/2α, where σ∗ is the cavitation number at inlet to the propeller. Those values of
K∗/2π and M∗ are shown in Figure 2 for a propeller with typical values for the solidity (1.0), stagger angle
(β = 25◦) and number of blades (ZR = 5).

Figure 2: The estimated quasi-static cavitation compliance, K∗/2π, and mass flow gain factor, M∗, obtained by Watanabe
et al. (1998) using a free streamline approach. The results plotted against σ∗/2α are for a solidity of = 1.0, a stagger angle
β = 25◦ and number of blades, ZR = 5.

This completes a model for the low frequency dynamics of a cavitating propeller. In Section (Nrs) typical
low frequency dynamic transfer functions that result from this model are presented and analyzed.


