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Two-dimensional Flow Analysis

It is useful at this point to develop an approximate and idealized evaluation of the hydraulic performance
of a turbine in the absence of cavitation. This will take the form of an analytical expression for the head
drop (or ψ) as a function of the flow rate (or φ). To simplify this analysis it is assumed that the flow
through the runner is incompressible, axisymmetric and steady in the rotating framework of the runner
blades; that the blades are infinitely thin. Viscous losses will momentarily be neglected. Under these

Figure 1: Developed meridional surface and velocity triangle.

conditions the flow in any streamtube, such as depicted in Figure 1), will follow the Bernoulli equation for
a rotating system (see, for example, Sabersky et al. 1989),
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This equation can be usefully interpreted as an energy equation as follows. The terms p+ 1
2
ρw2 on either

side are the total pressure or mechanical energy per unit volume of fluid, and this quantity would be
the same at inlet and discharge were it not for the fact that “potential” energy is stored in the rotating
fluid. The term ρ(r2
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2/2 represents the difference in this “potential” energy at inlet and discharge.



Clearly, when there are losses, equation (Mdi1) will no longer hold exactly but will be empirically modified
to account for viscous losses.

Using the definition of the total pressure (equation (Mde6)) and the relations between the velocities derived
from the velocity triangles of figure 1, equation (Mdi1) can be manipulated to yield the following expression
for the total pressure drop, (pT
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2 ), for a given streamtube:
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and, if the hydraulic losses are included, the relation (Mdi2) is traditionally and empirically modified using
a turbine hydraulic efficiency, ηT , so that
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= r1vθ1 − r2vθ2 = r1(vm1 cotβ1 + Ωr1) − r2(vm2 cotβ2 + Ωr2) (Mdi3)

using geometric relations from the velocity triangles of Figure 1.

This expression for the head drop in an individual stream tube can then used to integrated over the
entire flow through the runner using the expressions (Mde12) and (Mde13) (as was done in the equivalent
hydraulic analysis for a pump described in section (Mbdc)). A more approximate but still useful result
can be achieved by utilizing the tip geometry in equation (Mdi3) by substituting

r1 ≈ RT 1 ; r2 ≈ RT 2 ; β1 ≈ βT 1 ; β2 ≈ βT 2 ; vm1 = Q/A1 ; vm2 = Q/A2 (Mdi4)

and, from equation (Mde1):
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where A1 is the cross-sectional area of the flow at inlet (and A2 is the cross-sectional area of the flow at
discharge from the runner). Therefore, using the definitions of equations (Mde7) and (Mde8), equation
(Mdi3) can be rearranged to express the following form of the non-dimensional performance characteristic
of the turbine:
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using the definitions in equations (Mde7). Alternatively utilizing the relation (Mdi5):
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For the convenience of later discussion we write this as

ηT ψ = Γ1φ− Γ2 (Mdi8)
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Clearly an approximate, two-dimensional analysis and an expression like (Mdi7) will be more accurate for
cases in which the flows at inlet and discharge are uniform as would be the case for a turbine in which
the widths, B1 and B2 (figure 1 of section (Mde)), are such that B1 � RT 1, B2 � RT 2, and in which the
velocities of the flow are uniform across both the inlet and the discharge. However, even in nonuniform
cases in which the two-dimensional analysis is less appropriate and in which it is more appropriate to
subdivide the flow into stream tubes and integrate over those stream tubes using equations (Mde12) and



(Mde13), a linear relation like (Mdi8) is still a useful approximation and the simple expressions (Mdi9)
can be used in combination with mean or effective angles, βi and βT 2, and geometric ratios, RT 2/RT 1

and A1/A2, to estimate the performance of the turbine. Moreover, as in the case of the equivalent pump
analysis, various empirical loss coefficients can be added to this analysis in order to evaluate the efficiency,
ηT , and thereby achieve fairly close agreement with experimental measurements. We also note is passing
that, from equation (Mde18), the torque/power coefficient, T , is related to ψ and φ by T = φψ.

For convenience we focus our comments on the non-dimensional performance given by equation (Mdi7) or
(Mdi8). First note that, just as was the case for the equivalent analysis of a pump, the ideal or lossless
(ηT = 1) non-dimensional head coefficient, ηTψ, varies linearly with the non-dimensional flow coefficient,
φ. In a hydraulic performance graph of ηTψ plotted versus φ the intercept with the vertical or ηTψ axis
should be approximately given by −Γ2 and thus be only a function of the ratio of the discharge radius to
the inlet radius. However, the slope of the performance curve will vary with the wicket gate setting which
sets the inlet swirl angle, βi, in the non-rotating frame and with the discharge blade angle, βT 2, in the
rotating frame. An example is presented in the next section.


