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Notation

Figure 1: Schematic showing the relationship between the forces in the pump frame, F ∗
x , F ∗

y , the rotordynamic forces, F ∗
n ,

F ∗
t , the impeller center, the whirl orbit, and the volute geometry.

The forces that the fluid imparts to the rotor in a plane perpendicular to the axis of rotation are depicted
in figure 1, and are decomposed into components in the directions x and y, where this coordinate system
is fixed in the framework of the pump. The instantaneous forces are denoted by F ∗

x (t), F ∗
y (t), and the

time-averaged values of these forces in the stationary frame are denoted by F ∗
0x, F ∗

0y. By definition, these
are the steady forces commonly referred to as the radial forces or radial thrust. Sometimes it is important
to know the axial position of the line of action of these forces. Alternatively, one can regard the x, y axes as
fixed at some convenient axial location. Then, in addition to the forces, F ∗

x (t) and F ∗
y (t), the fluid-induced

bending moments, M∗
x(t) and M∗

y (t), would be required information. The time-averaged moments will be
defined by M∗

0x and M∗
0y.

Even if the location of the center of rotation were stationary at the origin of the xy plane (figure
1) the forces F ∗

x (t), F ∗
y (t) and moments M∗

x(t), M∗
y (t) could still have significant unsteady components.

For example, rotor-stator interaction could lead to significant forces on the impeller at the blade passing
frequencies. Similarly, there could be blade passing frequency components in the torque, T (t), and the
axial thrust, as discussed earlier in section (Mbfb). For simplicity, however, they will not be included in
the present mathematical formulation.

The other set of forces with which this chapter will be concerned are the fluid-induced rotordynamic
forces that are caused by the displacement and motion of the axis of rotation. It will be assumed that this
displacement is sufficiently small so that a linear perturbation model is accurate. Then{

F ∗
x (t)

F ∗
y (t)

}
=

{
F ∗

0x

F ∗
0y

}
+ [A∗]

{
x(t)

y(t)

}
(Mcb1)

where the displacement is given by x(t) and y(t), and [A∗] is known as the “rotordynamic force matrix,”
which, in the linear model, would be independent of time, t. In virtually all cases that we shall be
describing here, the displacements are sinusoidal. The “whirl” frequency of these motions will be denoted
by ω (rad/s). Then, in general, the matrix [A∗] will not only be a function of the turbomachine geometry



and operating condition, but also of the whirl frequency, ω. In an analogous manner the rotordynamic
moment matrix, [B∗], is defined by

{
M∗

x(t)

M∗
y (t)

}
=

{
M∗

0x

M∗
0y

}
+ [B∗]

{
x(t)

y(t)

}
(Mcb2)

The radial forces will be presented here in nondimensional form (denoted by the same symbols without the
asterisk) by dividing the forces by ρπΩ2R3

T 2L, where the selected length L may vary with the device. In
seals and bearings, L is the axial length of the component. For centrifugal pumps, it is appropriate to use
the width of the discharge so that L = B2. With axial inducers, the axial extent of the blades is used for
L. The displacements are nondimensionalized by R. In seals and bearings, the radius of the rotor is used;
in centrifugal pump impellers, the discharge radius is used so that R = RT 2. It follows that the matrix [A]
is nondimensionalized by ρπΩ2R2L. Correspondingly, the radial moments and the moment matrix [B] are
nondimensionalized by ρπΩ2R4L and ρπΩ2R3L respectively. Thus{

Fx(t)

Fy(t)

}
=

{
F0x

F0y

}
+ [A]

{
x(t)/R

y(t)/R

}
(Mcb3)

{
Mx(t)

My(t)

}
=

{
M0x

M0y

}
+ [B]

{
x(t)/R

y(t)/R

}
(Mcb4)

The magnitude of the dimensionless radial force will be denoted by F0 = (F 2
0x + F 2

0y)
1
2 , and its direction,

θ, will be measured from the tongue or cutwater of the volute in the direction of rotation.
One particular feature of the rotordynamic matrices, [A] and [B], deserves special note. There are many

geometries in which the rotordynamic forces should be invariant to a rotation of the x, y axes. Such will
be the case only if

Axx = Ayy ; Axy = −Ayx (Mcb5)

Bxx = Byy ; Bxy = −Byx (Mcb6)

This does appear to be the case for virtually all of the experimental measurements that have been made
in turbomachines.

The prototypical displacement will clearly consist of a circular whirl motion of “eccentricity”, ε, and
whirl frequency, ω, so that x(t) = ε cos ωt and y(t) = ε sinωt. As indicated in figure 1, an alternative
notation is to define “rotordynamic forces”, F ∗

n and F ∗
t , that are normal and tangential to the circular

whirl orbit at the instantaneous position of the center of rotation. Note that F ∗
n is defined as positive

outward and F ∗
t as positive in the direction of rotation, Ω. It follows that

F ∗
n = ε

(
A∗

xx + A∗
yy

)
/2 (Mcb7)

F ∗
t = ε

(
A∗

yx − A∗
xy

)
/2 (Mcb8)

and it is appropriate to define dimensionless normal and tangential forces, Fn and Ft, by dividing by
ρπΩ2R2Lε. Then the conditions of rotational invariance can be restated as

Axx = Ayy = Fn (Mcb9)

Ayx = −Axy = Ft (Mcb10)

Since this condition is met in most of the experimental data, it becomes convenient to display the rotordy-
namic forces by plotting Fn and Ft as functions of the geometry, operating condition and frequency ratio,
ω/Ω. This presentation of the rotordynamic forces has a number of advantages from the perspective of
physical interpretation. In many applications the normal force, Fn, is modest compared with the potential
restoring forces which can be generated by the bearings and the casing. The tangential force has greater



significance for the stability of the rotor system. Clearly a tangential force that is in the same direction as
the whirl velocity (Ft > 0 for ω > 0 or Ft < 0 for ω < 0) will be rotordynamically destabilizing, and will
cause a fluid-induced reduction in the critical whirl speeds of the machine. On the other hand, an Ft in
the opposite direction to ω will be whirl stabilizing.

Furthermore, it is conventional among rotordynamicists to decompose the matrix [A] into added mass,
damping and stiffness matrices according to

[A]

{
x/R

y/R

}
= −

[
M

−m

m

M

] {
ẍ/RΩ2

ÿ/RΩ2

}
−

[
C

−c

c

C

] {
ẋ/RΩ

ẏ/RΩ

}
−

[
K

−k

k

K

]{
x/R

y/R

}
(Mcb11)

where the dot denotes differentiation with respect to time, so that the added mass matrix, [M ], multiplies
the acceleration vector, the damping matrix, [C ], multiplies the velocity vector, and the stiffness matrix,
[K], multiplies the displacement vector. Note that the above has assumed rotational invariance of [A],
[M ], [C ] and [K]; M and m are respectively termed the direct and cross-coupled added mass, C and c
the direct and cross-coupled damping, and K and k the direct and cross-coupled stiffness. Note also that
the corresponding dimensional rotordynamic coefficients, M∗, m∗, C∗, c∗, K∗, and k∗ are related to the
dimensionless versions by

M, m =
M∗, m∗

ρπR2L
; C, c =

C∗, c∗

ρπR2LΩ
; K, k =

K∗, k∗

ρπR2LΩ2
(Mcb12)

The representation of equation (Mcb11) is equivalent to assuming a quadratic dependence of the elements
of [A] (and the forces Fn, Ft) on the whirl frequency, or frequency ratio, ω/Ω. It should be emphasized
that fluid mechanical forces do not always conform to such a simple frequency dependence. For example,
in section (Nlg), we shall encounter a force proportional to ω

3
2 . Nevertheless, it is of value to the rotordy-

namicists to fit quadratics to the plots of Fn and Ft against ω/Ω, since, from the above relations, it follows
that

Fn = M (ω/Ω)
2 − c (ω/Ω) − K (Mcb13)

Ft = −m (ω/Ω)
2 − C (ω/Ω) + k (Mcb14)

and, therefore, all six rotordynamic coefficients can be directly evaluated from quadratic curve fits to the
graphs of Fn and Ft against ω/Ω.

Since m is often small and is frequently assumed to be negligible, the sign of the tangential force is
approximately determined by the quantity kΩ

/
ωC. Thus rotordynamicists often seek to examine the

quantity k/C = k∗/ΩC∗, which is often called the “whirl ratio” (not to be confused with the whirl
frequency ratio, ω/Ω). Clearly larger values of this whirl ratio imply a larger range of frequencies for which
the tangential force is destabilizing and a greater chance of rotordynamic instability.

In the last few paragraphs we have focused on the forces, but it is clear that a parallel construct is relevant
to the rotordynamic moments. It should be recognized that each of the components of a turbomachine will
manifest its own rotordynamic coefficients which will all need to be included in order to effect a complete
rotordynamic analysis of the machine. The methods used in such rotordynamic analyses are beyond the
scope of this book. However, we shall attempt to review the origin of these forces in the bearings, seals, and
other components of the turbomachine. Moreover, both the main flow and leakage flows associated with
the impeller will generate contributions. In order to permit ease of comparison between the rotordynamic
effects contributed by the various components, we shall use a similar nondimensionalization for all the
components.


