
An Internet Book on Fluid Dynamics

Introduction to Jet Pumps

A basic jet pump is a very simple device without any moving parts that utilizes a source of higher pressure

Figure 1: Basic jet pump geometry and notation.

fluid to pump a stream of another fluid that may be the same or different or a multiphase mixture. The
basic components are depicted in Figure 1. The high velocity stream of primary fluid produced by the
nozzle entrains and thereby pumps the stream of secondary fluid by utilizing the Venturi effect. Since there
are no moving parts, the jet pump is very reliable and needs little maintenance. Moreover, it can be fitted
into confined spaces where access is very difficult if not impossible. They are also useful for pumping heavy
multiphase fluid mixtures such as occur in oil wells. As a result jet pumps have been used in a variety of
technical contexts including inside nuclear reactor vessels and submerged in oil wells. Figure 2 exemplifies
the deployment in an oil well.

The basic fluid mechanics of the jet pump were first expounded by Gosline and O’Brien (1934) (see also
Mueller (1964)) and are presented in detail by Sanger (1968a, 1968b) and others. Conventionally, the one-
dimensional notation and parameters of the flows are as follows. The cross-sectional areas of the nozzle
flow and the mixing section are denoted by An and At respectively. The volume flow rates and total heads
of the primary and secondary fluids (assumed incompressible) are denoted by Q1 and Q2 and H1 and H2

respectively. The discharge total head is denoted by H5. Then the key non-dimensional parameters are
defined as follows:

• Nozzle to throat area ratio = A = An / At

• Flow ratio = M = Q2 / Q1

• Head coefficient = ψ (M) = (H5 −H2)/(H1 −H5)

• Efficiency = η = ψM

• Coefficient of pressure = Cpx = (pi − p2)/(ρQ
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where the fluid density is denoted by ρ and the fluid pressures at various locations, i (i = 1, 2, 3, 4, 5
respectively at the primary inlet, the secondary inlet, the throat inlet, the throat discharge and the diffuser



Figure 2: A deep oil well installation incorporating a jet pump. Adapted from Lea, Nickens and Wells (2008).

discharge). In addition, Sanger incorporated hydraulic loss coefficients for the flows as follows:
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Then, by applying conventional one-dimensional flow analyses, Sanger obtained the following theoretical
expression for the head coefficient, ψ:

ψ =
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Sanger (1968a, 1968b) made a thorough experimental investgation of these loss coefficients and demon-
strated that the theoretical performance represented by equation (Mbh5) was in good agreement with his
performance measurements, a sample of which is presented in Figure 3.

**



Figure 3: Typical jet pump performance curves from Sanger (1968a, 1968b): the head ratio, ψ, and efficiency, η, as a function
of the flow ratio, M , for various relative locations of the nozzle (s/d) and two different flow rates (open and closed symbols).

Often jet pumps are combined with downstream centrifugal pumps in order to maximize efficiency and
performance: a typical arrangement is shown in Figure 4 in which some portion of the discharge from the
centrifugal pump is fed back to provide the primary flow for the jet pump.

This combination will operate most effectively in a particular range of jet pump flow ratios, M , as can
be demonstrated as follows. Assuming that cavitation is absent, the centrifugal pump will yield a head
coefficient, ψP , that is roughly linear with the flow coefficient, φP , in the vicinity of the design point (see
section (Mbbe)). For convenience we will approximate this performance line by

ψP = C1 − C2φP (Mbh6)

where the constants C1 and C2 are assumed known. Correspondingly the performance of the jet pump can
by approximated by a linear relation as demonstrated by Figure 3:

ψ = C3 − C4M (Mbh7)

where, again, as illustrated by Figure 3, the constants C3 and C4 are assumed known. Then, neglecting
some of the minor hydraulic losses in the connecting pipes, it is readily shown that the overall head
coefficient, ψC, for the combination is given by

ψC = ψP [1 + C3 − C4M ] − C2φP/M (Mbh8)

where the same non-dimensionalizing factor is used in defining ψP and ψC. It follows from equation (Mbh8)
that there is an optimal flow ratio for the jet pump given by

(M)optimal =

[
C2

C4

φP

ψP

]1/2

(Mbh9)

As a numerical example, we use the data for a centrifugal pump shown in section (Mbbe) for which
φP ≈ 0.09, ψP ≈ 0.35 and C2 ≈ 2.05 − 4.75 depending on the volute geometry. Coupling this with the jet
pump of Figure 3 for which C4 ≈ 0.025 yields

(M)optimal ≈ 4.5 − 7 (Mbh10)



Figure 4: A typical combination of a jet pump with a centrifugal pump.

which implies that the combination performs best for the high values of the flow ratio, M .

**

Cavitation can have a substantial effect on the performance of a jet pump (see, for example, Hansen and
Na (1968), Sanger (1968b), Cunningham et al. (1970), Cunningham (1995)). As the pressure level is
decreased or the jet velocity is increased, cavitation first occurs in the shear layer surrounding the jet.
As the cavitation increases, the flow in the throat becomes choked and the performance of the jet pump
declines. Consequently, cavitation limits the velocity of the jet and the flow ratio, M , at which the jet
pump can operate. Cunningham (1995) reviews the criteria for that limiting flow ratio.


