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Pumps in Series

Pumps are often connected in series in order to produce a larger head rise than any one of the pumps
or impellers could achieve alone. The usual arrangement is shown in Figure 1 (left). Sometimes physical
limitations, for example on the pump diameter, lead to designs involving many, many stages as in down-
hole oil well pumps; shown in Figure 1 (right) is one stage in an oil well pump stack that might involve as
20 or 30 stages.

Figure 1: Left: Typical multistage centrifugal pump. Right: One stage of a down-hole oil well pump.

The first step in designing a pump stack is to calculate the overall or total specific speed, NT , given by
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where Ω (in rad/s) is the rotational speed (assumed the same for all impellers in the stack) , Q (in m3/s) is
the flow rate (assumed the same for all impellers in the stack) and HT (in m) is the total head rise produced
by the whole stack. The second step is to decide on the design of an impeller, or more specifically on a
design specific speed, N1, associated with each individual stage in the stack. For example, if each stage is
to consist of a centrifugal impeller then, according to section Mbbd, an appropriate choice for N1 would
be about 0.5. On the other hand if each stage is to consist of an axial flow impeller then, according to
section Mbbd, an appropriate choice for N1 would be about 4.0. Having decided on an N1 it then follows
that the number of stages in the stack, n, should be
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since the head rise across each stage will be HT /n.



Performance of Pumps in Series

Another common configuration is the series operation of two or more pumps with their own motors. It is
therefore useful to examine some of the features of such operation. For simplicity we examine two pumps
operating in series; larger numbers can be treated by a simple extension of the methodology outlined here.
The two pumps are assumed to have the same non-dimensional head/flow characteristic, a plot of the
reduced head rise, h = H/N2, against the reduced flow rate, q = Q/N where, in these expressions H is the
head rise across each pump (in m), Q is the flow rate (in m3/s), and N is the impeller rotational speed
(in rad/s).

First we consider the two pumps, labeled A and B, operating at the same speed, N and, in the absence of
cavitation, we denote the identical operating points consisting of a common flow rate Q (q = Q/N) and
each pump with its own individual total head rise H (h = H/N2) so that the combined total head rise is 2H.
We will assume that the pump characteristic through the operating point can be locally approximated by
a straight line and that the negative slope of that straight line is denoted by S = −δh/δq = (−δH/δQ)/N .
Furthermore we will assume that the final discharge proceeds through a pipeline or other device with a
quadratic hydraulic resistance, R (total head loss equal to R times the square of the flow rate).

Now consider what happens when the speed of pump B is increased by a small quantity δN to N + δN
while the speed of pump A remains unchanged. The increase in the total head rise across pump A will
be denoted by δHA and that across pump B by δHB . The flow rate increase will be denoted by δQ so
that the new common flow rate through both pumps will be Q + δQ. We will proceed to find the relations
between δN , δHA, δHB and δQ.

The operating points of both pumps are assumed to track along the reduced pump characteristic. In the
case of pump A whose speed does not change this means that
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or
δHA = −SNδQ (Mbbk4)

In the case of pump B whose speed does increase by δN it means that
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or

δHB = {2H + SNQ} δN

N
− SNδQ (Mbbk6)

where we have neglected all quadratic combinations of the incremental changes. Combining equations
(Mbbk4) and (Mbbk6) the combined total head rise of the two pumps is now

2H + δHA + δHB = 2H + {2H + SNQ} δN

N
− 2SNδQ (Mbbk7)

It is, of course, possible to select from a number of alternative boundary conditions at the pump discharge.
For present purposes, we choose to apply a quadratic hydraulic resistance, R, such that the head loss
downstream of the discharge is equal to R times the square of the flow rate and downstream of that the
total head remains constant. Consequently

δHA + δHB = {2H + SNQ} δN

N
− 2SNδQ = 2RQδQ (Mbbk8)



where quadratic combinations of the incremental quantities have again been neglected. It follows that
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and substituting back into equations (Mbbk4) and (Mbbk6) the changes in the total head rises become
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The results in equations (Mbbk9), (Mbbk10) and (Mbbk11) exhibit several different asymptotic limits that
are useful to describe:

• For pumps operating at the high head/low flow end of their characteristic where dH/dQ and S are
small (explicitly |S| � H/NQ) it follows from the above results that if RQ � |S|N
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or if RQ � |S|N then
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• In the limit of large discharge line resistance (specifically |R| � |S|N/Q) the system responses reduce
to
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• In the other limit of a small discharge line resistance (specifically |R| � |S|N/Q)
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As a numerical example, consider the case in which H = 45.6m, Q = 0.874m3/s, −(dH/dQ) = 37.4s/m2

from which it follows that H/SNQ = 1.395. Then, according to the above formula, a 5% increase in the
speed of pump B (δN/N = 0.05) would lead to the following:

• In the limit of a large discharge line resistance:
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so the fractional increase in both the total head and the head of pump A are disappearing; on the
other hand the fractional increase in the head of pump B is almost three times the fractional increase
in the speed of pump B.



• In the limit of a small discharge line resistance:
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so the fractional increase in the flow is almost four times the fractional increase in speed of pump B
while the fractional changes in the pump heads are slightly larger than the fractional increase in the
speed of pump B.


