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Energy Balance

The next step in the assessment of the performance of a turbomachine is to consider the application of
the first and second laws of thermodynamics to such devices. In doing so we shall characterize the inlet
and discharge flows by their pressure, velocity, enthalpy, etc., assuming that these are uniform flows. It
is understood that when the inlet and discharge flows are non-uniform, the analysis actually applies to a
single streamtube and the complete energy balance requires integration over all of the streamtubes.

The basic thermodynamic measure of the energy stored in a unit mass of flowing fluid is the total
specific enthalpy (total enthalpy per unit mass) denoted by hT and defined by
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where e is the specific internal energy, |u| is the magnitude of the fluid velocity, and z is the vertical
elevation. This expression omits any energy associated with additional external forces (for example, those
due to a magnetic field), and assumes that the process is chemically inert.

Consider the steady state operation of a fluid machine in which the entering fluid has a total specific
enthalpy of hT

1 , the discharging fluid has a total specific enthalpy of hT
2 , the mass flow rate is m, the net

rate of heat addition to the machine is Q, and the net rate of work done on the fluid in the machine by
external means is Ẇ . It follows from the first law of thermodynamics that
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Now consider incompressible, inviscid flow. It is a fundamental property of such a flow that it contains
no mechanism for an exchange of thermal and mechanical energy, and, therefore, equation (Mbbf2) divides
into two parts, governing the mechanical and thermal components of the total enthalpy, as follows
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e2 − e1 = Q/m (Mbbf4)

Thus, for incompressible inviscid flow, the fluid mechanical problem (for which equation (Mbbf3) represents
the basic energy balance) can be decoupled from the heat transfer problem (for which the heat balance is
represented by equation (Mbbf4)).

It follows that, if T is the torque applied by the impeller to the fluid, then the rate of work done on the
fluid is Ẇ = TΩ. Consequently, in the case of an ideal fluid which is incompressible and inviscid, equation
(Mbbf3) yields a relation connecting the total pressure rise across the pump, pT

2 − pT
1 , the mass flow rate,

m, and the torque:

m
(pT

2 − pT
1 )

ρ
= TΩ (Mbbf5)

Furthermore, the second law of thermodynamics implies that, in the presence of irreversible effects such
as those caused by viscosity, the equality in equation (Mbbf5) should be replaced by an inequality, namely
a “less than” sign. Consequently, in a real pump operating with an incompressible fluid, viscous effects
will cause some of the input energy to be converted to heat rather than to an increase in the stored energy
in the fluid. It follows that the right hand side of equation (Mbbf5) is the actual work done on the fluid by
the impeller, and the left hand side is the fraction of that work which ends up as mechanical energy stored
in the fluid. It is, therefore, appropriate to define a quantity, ηP , known as the pump hydraulic efficiency,



to represent that fraction of the work done on the fluid that ends up as an increase in the mechanical
energy stored in the fluid:
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Of course, additional mechanical losses may occur in a pump. These can cause the rate of work
transmitted through the external shaft of the pump to be greater than the rate at which the impeller does
work on the fluid. For example, losses may occur in the bearings or as a result of the “disk friction” losses
caused by the fluid dynamic drag on other, non-active surfaces rotating with the shaft. Consequently, the
overall (or shaft) efficiency, ηS , may be significantly smaller than ηP . For approximate evaluations of these
additional losses, the reader is referred to the work of Balje (1981).

Despite all these loss mechanisms, pumps can be surprisingly efficient. A well designed centrifugal pump
should have an overall efficiency in the neighborhood of 85% and some very large pumps (for example those
in the Grand Coulee Dam) can exceed 90%. Even centrifugal pumps with quite simple and crude geometries
can often be 60% efficient.


